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ABSTRACT 

We show that charge carrying propagators in axial gauges involve spurious 

sources that move along the rays of gauge-fixing. Although these spurious 

sources are hidden in the axial gauge in question, they are manifest when the 

same propagator is viewed in other gauges. Therefore, they influence the propa- 

gation of the dynamical fields. Thus the naive electron propagator in axial 

gauge quantum electrodynamics does not have the spectrum of a free, mass- 

renormalized electron. We confine our remarks to quantum electrodynamics here. 

In the sequel the implications for axial gauge quark and gluon propagators in 

quantum chromodynamics is discussed. Gauge-independent propagators do not suffer 

this affliction. 
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I. Introduction 

Since axial gauges were introduced by Schwinger Cl] and Arnowitt and 

Fickler [2] much has been said about the interpretation of the "kinematical" 

singularities of the momentum space gauge-vector propagator [3]. Although 

these singularities do not occur in Green's functions of gauge-independent 

operators, they do affect gauge-dependent propagators. In this report we 

discuss a related axial gauge phenomenon that seems not to have been widely 

appreciated, namely, that in axial gauge the propagation of fields induced by 

charged operators occurs in the presence of spurious sources that, although 

hidden, nevertheless have a dynamical effect upon the propagation. 

Our observation proceeds from a rather elementary remark that is easily 

illustrated in temporal axial gauge quantum electrodynamics. In this gauge 

physical states satisfy Gauss' law in the form 

Ed(;) - p(;)ljphys> = 0 

where p(G) = - e:++(G) $($):. Therefore, the state 

++(:I Iphys> 

satisfies a modified version of Gauss' law 

[V-s(;) - p(G) - ea3(:-;)] ++(;)lphys> = 0 , 

(1.1) 

(1.2) 

(1.31 

with an additional fixed "spurious" source at the position G with charge 

opposite the dynamical fermion. Apparently, all axial gauges have the feature 

that local gauge-dependent operators are associated with spurious point-like 

source currents. These currents affect the propagation of the dynamical field 

in peculiar ways. The appearance, interpretation, and dynamical effect of these 

sources is discussed at length in the following sections. 
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We shall confine our remarks to a class of 'superaxial" gauges obtained by 

completely fixing the gauge up to a global gauge transformation. These are 

gauges in which any pair of space-time points x and y is connected by a unique 

path R defined by r(T), where r(O) = y and r(l) = x, such that 

Ap(r) .%lL = 0 
dT 

(1.4) 

for all r on the path. Thus, for example, we may define a super-temporal gauge 

by the conditions 

A"(x) = 0 for all xu 

A3(t*, "x, = 0 for all Z 
(1.5) 

A2(t*,x1,x2,z*) = 0 for all x1 x2 3 

Al(t*,xl,y*,z*) = 0 forallxl . 

where y*, z*, and t* are real constants. Then every pair of points x and y is 

connected by a path that moves from x parallel to the x0 axis to t*, then paral- 

lel to the x3 axis to z*, then parallel to the x2 axis to y*, then parallel to 

the x1 axis until it connects with a corresponding path from y. Retraced seg- 

ments are then dropped leaving the unique path. The gauge given by (1.5) is 

simply a temporal axial gauge with a specific choice fixing the subsidiary 

gauge freedom that would otherwise have permitted arbitrary time-independent 

gauge transformations in temporal axial gauge. Fixing the gauge in this way 

removes any ambiguity in the propagators. It is necessary to remove any residual 

gauge freedom for another reason: Failing to do so in temporal gauge prevents 

propagation of charged operators between different points in three space [4]. 
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After a brief discussion of the origin of the spurious sources in the 

functional integral formulation of quantum electrodynamics in Sec. II, we give 

an explicit, elementary example of their appearance in the classical Maxwell 

theory and in the one-loop electron self-energy in perturbative quantum electro- 

dynamics in Sec. III. We mention some consequences in the concluding section. 
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II. Origin of the Spurious Sources 

Green's functions for quantum electrodynamics are obtained from the usual 

generating functional 

Z(Jp, 59~1) = ~[dA,,l[d~lCd+l 

exp i CW(A,,, T4L) - I(J~A~ + GI + 7+)d4x1 , (2.1) 

where WCA,,, $,I)) is the QED action for the vector potential A,, and Dirac fields 

$3 G. The super-axial gauge Green's functions are obtained by restricting the 

functional integration over A,, to those configurations conforming to the gauge 

restrictions* and carrying out the usual functional differentiation of InZ with 

respect to the various currents. The fermion correlation function is, as usual 

<014’(X) ~(Y)IO>SA = /[dA,lsA[61[&1 

exp iCW(Ap,T,+)I +(x) ~(y)lZsA(O,O,O) (2.21 

where SA refers to a restricted integration over fields satisfying the super 

axial gauge condition. Of course on the right side the product $(x) T(y) can 

be replaced by the gauge-invariant expression 

where 

$(x) C(x,y,R)?Jy) (2.3) 

C(x,y,R) = exp [ie ~RAP(r)druI (2.4) 

without altering the result, provided that the path R is the unique path in this 

*In temporal gauge it is essential to include what is called in hamiltonian 
language the projection onto states satisfying Gauss' law. In the action 
language (2.1) this restriction is accomplished by taking care that.on at least 
one timelike surface A, is not set to zero, but is integrated functionally. In 
this sense there is a slight difference between the conditions (1.5) and the 
conditions defining the functional manifold. 
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gauge connecting x and y satisfying (1.4), i.e. along which A,,(x) drp = 0. 

With such a path, C = 1. In other words, the expression 

<01 q(X) C(x,y,R) T(y)IO>SA = 
(2.5) 

~CdA,lSAC~l[:d~lexP[:iW(AU, 7, '$')I $(x)C(x,y,R) ~'(Y)/zSA(o,o,o) 

is the same as (2.21, but is gauge invariant. After carrying out a gauge 

transformation from the gauge SA to a different gauge G the expression is 

still unchanged if the string remains at R. In the new gauge the string 

operator is not trivial. In this way the string "remembers" the gauge in 

which the correlation function was originally defined. However, in the new 

gauge the string corresponds to an explicit spurious external source that 

moves along the path R connecting x to y, i.e. the string operator has the 

form 

C(x,y,R) = exp (ilJsU(x) A,(x) d4x1 (2.6) 

where 
1 

Jug(x) = e I dr 64[x - r(T)] 3 , 
0 

(2.7) 

and where the path r(T) is described in Sec. 1. The expression in (2.61, when 

substituted into (2.5), corresponds to an action in the presence of the external 

source J,p(x). This external source certainly affects the propagation of the 

fermion even though it is hidden in the original gauge. Moreover, it contributes 

to the ultraviolet-divergent self energy of the propagator. 

To be more concrete, consider the super-temporal gauge (1.5). Suppose 

that the point y does not coincide with the subsidiary gauge-fixing coordinates, 

i.e. yo # t*, yS f z*, y2 + y*, as is usually the case. Suppose, also, that 

t* > yo and xo > yo so that a fermion is created at y and propagates to x. 

Then the path R emerges from y moving initially forwards and parallel to the 
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xo axis--i.e. it is initially a static source with charge opposite that of the 

fermion. Thus in operator language, the fermion creation operator, acting upon 

the physical vacuum, creates not only the dynamical fermion, but also generates 

a fixed opposite charge at the point of creation as noted in Sec. 1. As the 

dynamical fermion moves away from the point of creation it generates an electric 

field with flux lines that end on the fixed charge. Thus it propagates as an 

electron in the hydrogen atom in the approximation of an infinite proton mass 

and zero proton spin! The spectrum of the propagator must reflect the presence 

of the spurious source. 

In A3 = 0 axial gauge the current would run initially along the x3 axis to 

a point z*. In operator language such a current is associated with the creation 

of an infinitesimal tube of electric flux along the same path. The creation of 

such a structure also has a dramatic effect upon the fermion propagation. 

The spurious sources associated with the vector potential are more subtle. 

Let us consider temporal axial gauge. It is convenient to consider the string- 

bit operator 
+ + 
xtdx 

B(;,d& = exp Ciq I, 
X 

A&Y) dy"] 9 (2.8) 

for which 

[v-i(;) - P(;) + q63&d;-;) -qa3(;-y+)] B(;,d;)lphys> = 0 . (2.9) 

Therefore the operator B generates a pair of spurious sources at g and G+di 

with fixed charge strength q. The choice of charge strength here is entirely 

arbitrary, of course. 

Since the Hilbert space of states containing fixed sources is orthogonal 

to the physical Hilbert space, which contains no fixed sources, it follows that 

for q f 0 
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<physlB(;x*,d:)/phys> = 0 . (2.10) 

Consequently A,, is an infinite operator on the physical sector. To see this, 

let us suppose that Au has finite matrix elements. Then in the limit d; + 0 

we can approximate the exponential 

11" <physl(l + ie jf(x) l d;)lphys> = 0 . (2.11) 

dx + 0 

++ 
Therefore, as long as the physical state has non-zero norm, A(x) must have an 

expectation value that is not bounded from below. Failing to recognize this 

fact leads to bizarre consequences C51. Other axial gauges undoubtedly have 

similar problems. To define the temporal axial gauge correlation function of 

the vector potential, naively given by 

Dij(XJ) = <O/Ai(x)Aj(y)lO> , (2.12) 

we propose instead the expression 

(2.13) lim 

dx,d; + 0 

<O/B*(;,di) B($,d;)lO>5A = 1 + q2 dXidyjDij(X,y) 

Of course the expression (2.12) is singular in temporal axial gauge, 

expression (2.13) does not appear to suffer from this difficulty. 

but the 

Because the spurious sources induced by the vector potential correspond to 

an electric dipole of vanishing strength, they are not expected to have an 

effect upon the propagation of the photon in the limit d;, 4; + 0. 
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III. Spurious Sources in Classical and quantum Electrodynamics 

In this section we will demonstrate our previous remarks concerning spuri- 

ous sources by performing two model calculations in electrodynamics. We will 

begin in a classical context by defining the photon propagator as the Green's 

function for the four-dimensional vector wave equation. This Green's function 

will reflect the boundary conditions imposed on the vector potential both 

without and with the subsidiary gauge constraints allowed in temporal axial 

gauge. In the classical theory, one deals with conserved current sources. 

However, in the quantum theory, because one often deals with non-gauge invari- 

ant operators, the photons can couple to non-conserved currents. Hence, with 

an eye towards the quantum theory, we will discuss the action of the classical 

Green's function on both conserved and non-conserved currents. Then we will 

proceed to a quantum description and calculate the second-order contribution 

to the electron propagator in temporal gauge DED. It will be shown that the 

super-temporal gauge electron propagator is equivalent to the Coulomb gauge 

propagator in the presence of a fixed source, which exists upon the rays of 

gauge fixing. Then we will relate this result to the gauge invariant electron 

propagator G(x,yl, defined by 

ieldz A"(z) 

G(x,y) E <T($(xl e R p CL(Y))> , (3.11 

where the path R connects the points x and y according to the gauge condition. 

A. Classical Theory 

Our model calculation is to show how spurious source currents appear when 

we attempt to find the vector potential Au(x) due to some known current configu- 

ration Jp(x). The equation of motion for the potential is given by 

LP,, A"(X) E [/-16~'\, - aua,lAV(x) = Jp(x) . (3.21 - 
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Because this equation is invariant under the change of gauge Au(x) -t Au(x) + 

#A(X), h(x) an arbitrary function of x, in order to solve it for AP we must 

first set constraints or gauge conditions upon Au. Having done this, we may 

solve (3.2) by finding the Green's function DpV(x), such that 

AP(x) = ,d4y Duv(x,y) J"(x) (3.3) 

satisfies equation (3.2). 

For example, in the Coulomb gauge we require that v.& = 0 and that the 

potential AuC(x) vanish at infinity. Then the Green's function is given by 

Dt,(x,y) = 6F060, 
6(t, - ty' 

4?rl+x - ;I 
(3.4) 

- 6~i 6jv [a’ j DF(x-y) - six ayj jd3x' 
DF(tx-ty, Xl-y) , 

4x1; - :y 

[Greek indices run from 0 to 3, Latin indices from 1 to 3, and 6ui = 0 if p = 0, 

6pi = 1 if u = i = 1, 2, or 3.1 Here DF(x-y) is the massless Feynman 

propagation function satisfying I~IDF(x-y) = 64(x-y). 

One may easily check, using DuCv in (3.3), that 

Luv A',(x) = Jp(x) t 6ui ai jd4y 
a(tx-ty) 

4n1: - ;I 
%J”(Y) 

= Jp’(x) , (3.51 

if Ju is a conserved current. This is consistent with (3.2), since a, Lp', 

is a nilpotent operator. However, eq. (3.3) in itself makes no reference to 

conserved currents, and we may consider.the action of DCuv upon non-conserved 

currents Ju. In the case that apJp # 0, we may define the right hand side of 

Eq. (3.5) to be a new current 
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Jop = J’ + J’: (3.6) 

and find that a,, J'p = 0. In any gauge this procedure defines a gauge dependent 

"return current" or spurious source that completes the non-conserved current. 

We are particularly interested here in the spurious sources associated with 

axial gauges. 

Now let's turn to the temporal axial gauge A0 = 0. We may construct the 

temporal axial gauge potentials from the Coulomb gauge potentials by a gauge 

transformation: 

A;(x) = G[C h &(x1 (3.71 

The subscripts A and C refer to axial and Coulomb, respectively, and Gph is a 

linear integral operator. For example, we may choose 

G!&,(x,y) = 6; 64lx-y) - a; 6; 63(;-;) e(t, - ty, e(ty-Tl (3-a) 

and then 

A;(x) = $(x1 - a' j 
t x 

T 
dt' AC'(t,xl . 

Here T is an arbitrary end point. (The principal value prescription corresponds 

to a slightly different choice and is discussed after Eq. (3.19) below.) 

Under the transformation (3.7) and (3.8), the Green's function changes 

according to 

& (X,Y) = fd4x' d4y' G:c~(x,x') G;cJy,y') D&(x',y') 

pj 7 t x tY 0 
= 6i 6~ IDCj(xJ) + ai ayj J dt jT dt' DCo(t,i;t',;)] 

T (3.10) 

Notice that in the new gauge the operator DA is still the identity on the 

space of conserved currents. This can be seen by direct substitution 
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Lx’v fd4y DA”~(X,Y) J?y) 

= xpv jd4y d4y' G ACa~(Y,Y’ ) DCVa(x,y ) J’(y) 

= xpy fd4y D;,,(w) J’(y) 

= J’(y) (3.11) 

where in obtaining the second line we use the fact that La is nilpotent, in 

obtaining the third line we integrated by parts and used 8-J = 0, and in the 

last line we used (3.5). The result is obviously true of any gauge. 

As we have stated before, the A O = 0 gauge constraint still allows for 

time independent gauge transformations. To completely specify the gauge in 

the manner of eqs. (1.5) we carry out further gauge transformations. Thus to 

fix A3(t*, + x) = 0, with t* being an arbitrary fixed point in time, we define 

ADA = G:AA A;(x) 

= A!(X) t a' j 
X3 

z* 
dx3' Ai (t*,i') . (3.11) 

[+x0 z (xl, x2, x3, ) z d,, x3’)]. Here z* is an arbitrary fixed point on the 

x3-axis. 

This transformation yields DgA,, in terms of Di,,, and we get 

3 
DAj(t*, ;I; Y) 

Y3 . . 

- ayj !* dy3 

x3 y3 
' Dj\3(x; t*, ;'I - ai ayj i* dx3' !* dy3' Di3(t*, ;I; t*, ;',I. 

(3.12) 
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Of course, at this point the gauge is still not completely specified for we are 

allowed to make transformations which are t and x3 independent, as in eqs. (1.51. 

However, doing so would increase the number of terms in (3.12) to sixty-four and 

certainly not add constructively to our arguments. In the following we will 

avoid these complications by working only in the t - x3 plane, keeping gI fixed 

in all quantities. Afterwards we will comment briefly on the general case. 

We shall now find the spurious current J, that completes a non-conserved 

current in this super-temporal gauge. In analogy with the Coulomb gauge result 

(3.5) we consider the action of the operator D5A upon various currents. As 

before this operator is the identity when acting upon conserved currents. Thus 

Lxpv ,d4Y DcJ,“~(x,Y) J’(y) = J”(x) (3.121 

for Jp(x1 conserved. To find its action upon a non-conserved current we may 

proceed by a tedious direct evaluation in analogy with (3.5) or we may simply 

observe that if it is possible to guess a J, such that J + J, is a conserved 

current, and such that D5A J, vanishes, then we have the answer immediately, 

for then 

Lxp, ld4y DsA”~(x,Y) J’(Y) 

= x"y ,d4y DsA"~(x,Y) [J’(y) + J,‘(Y)] 

= Jp(y) + J,p(y) . (3.13) 

With our choice of subsidiary gauge fixing it is easy to find the desired J,. 

For example let Jp be a non-conserved line current 

J”(x) = (dr fj4Lx - xs(7)l - 
dx,u 

dt 
(3.14) 

with ~~(7) a trajectory in the x0 - x3 plane such that 
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x,(O) = (Tl,O,O,Zl) 

xs(1) = (T2.O,C&~ , 

as shown in Figure 1. Clearly 

(3.15) 

a, Jp(xl = - 6(t, - TV) 6(x3 - z,) 6*(*xI) 

+ 6(tx - 71) 6(X3 - 2,) 6GJ . (3.16) 

The return current J, shown in Fig. 1 allows for current conservaton: i,.e. with 

the definitions 

J,” = 6; e(r2-x3) 8(x3-q) 6(t, - t*) 6*&,) 

- 6011 0(T, - t,) e(t, - t*) 6(X3 - z,) 62(+x,) 

+ s”o e(r 1 - t,) e(t, - t*) 6(X3 - z,l 62(:1l , (3.17) 

the total current is conserved 

a, [J” + Jusl = 0 . (3.18) 

Furthermore, because J, lies precisely along the rays of gauge fixing we have 

ld4r DsAv,(x,y) J;(y) = 0 . (3.19) 

Notice, of course, that we have chosen an example for which the return current 

occurs entirely in the xo - x3 plane. With complete subsidiary gauge fixing a 

more general case could be considered, and the return current would follow the 

path R described in Section 1. Notice also, that the arbitrary constant T in 

(3.9) does not appear in (3.17). In fact, because we have chosen to construct 

the axial gauge quantities by starting in Coulomb gauge, we have implicitly 
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chosen at each stage, a particular restriction on the remaining residual 

gauge freedom. This restriction is expressed in an indirect way in terms Of 

the Coulomb gauge quantities. By replacing this implicit restriction by an 

explicit and simple choice, as in (1.5) through a sequence of gauge trans- 

formations as in (3.7) we remove by stages the dependence upon arbitrary 

constants, such as T. 

The principle value prescription [3] corresponds to making the replace- 
t x 

ment 1, dt' + i ,I m dt' c(tX-t) in (3.9). If we follow up with the gauge trans- 

formation GSA that makes A3 vanish at t*, then we arrive at the same vector 

potential and the same spurious current as before. 

It is interesting to speculate on the consequences of instead letting 

the Coulomb gauge potential implicitly fix the subsidiary gauge freedom, as 

in (3.9). In that case the spurious current associated with Ju in (3.14) runs 

parallel to the time axis from ~1 to T, then emerges from ZI along electric 

dipole field lines at fixed t = T, converging on ~2, and then returns along a 

line parallel to the time axis from T to 72. With the principal value prescrip- 

tion replacing (3.9) as described above, the spurious source carries half the 

current to t = t m and half to t = - - at fixed zI, and returns each half at 

fixed 22. In any case, the spurious current is required. 

We are led to the physical picture that Dgi contains contributions that 

do not couple to conserved currents but that do couple to non-conserved currents 

in a way that generates additional, spurious sources JsP to yield a net 

conserved current. That is, 

AgA(x) = ld4y D;An(x,yl J’(Y) 

= ,d4y Dip(x,y) [J'(y) + J;(y)] + aPA . (3.20) 
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Here n(x) is the function that takes AP from the temporal axial gauge to the 

superaxial gauge, and 

(i) J,=O for JP conserved , 

(ii) a, (Jp + Ji) = 0 otherwise . (3.211 

Then note, since J + J, is in any case a conserved current, (3.20) has a 

simple transformation law under a change of gauge. Suppose we write (3.201 

in the Coulomb gauge: 

$"(x,Y) = Idx'dy' G&(x,x') G&,(y,y') D?A"(x',y') (3.201 

Then 

AIA(xl = ,d4y DE,(x,yl [J'(y) + J~(y)l + auA'(xl , (3.231 

where n'(x) takes AP from the Coulomb gauge to the super-axial gauge. The 

same current appears in the integrand, but now DEp(x,y) does not vanish along 

the trajectory of J,. In an axial gauge we may calculate a gauge invariant 

function and "hide" the spurious sources by forcing them to run along the rays 

of gauge fixing. In another gauge the spurious currents are manifest. 

B. Perturbation Theory 

We now extend our analysis to a quantum mechanical model. Specifically, 

we will use the action functional in quantum electrodynamics (QED) to find a 

photon propagation function identical to the one appearing in (3.121, and use it 

to show how string functions naturally appear in super-temporal gauge QED. 

Consider the action or generating functional for the free photon propagator: 

ZsA CJI = j[dAb]SA ei{WCAl + J * A} (3.24) 



(The notation J . A implies integration over space and time.) The subscript SA 

refers to having restricted the integration domain to include only those field 

configurations that satisfy the super-temporal gauge constraints (1.5). In (3.7) 

above we constructed the axial gauge from the Coulomb gauge by a gauge trans- 

formation linear in the field variables: 

A;(x) = G;Ch $(x1 (3.251 

Since the Jacobian of this transformation is independent of AL, it does not 

contribute to functional derivatives of In ZCJ], and hence we may write 

Z,[J] = j[dA,lC eilwEA1 + J * GAl , (3.261 

where we have indicated our restriction to Coulomb gauge fields by the subscript 

C. Thus, if DC is the Coulomb gauge propagator, using an obvious notation, 

ZA[J] = exp iJ . [ZDC iI - J . (3.271 

We conclude that the bare quantum propagator for the photon is Di, (x,y) = 

Idx'dy' GiCh(x,x') GiC,,(y,y') Dkp(x',y') as in (3.10). Since we may compound 

gauge transformations, we may follow the transformation (3.251 with the trans- 

formation (3.11) leading to the same expression for the propagator as the 

classical expression (3.12), provided we restrict our attention to the x0 - x3 

plane. 

Now consider the electron propagation function in super-axial gauge. In 

perturbation theory, we define 

iSSA(x,y) = i.$(x-y; t iS(*)(x,y) + O((r*) , (3.281 
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where is(*) (x,y) is the lowest-order gauge variant contribution to the propagator 

and is given by 

p (x y) , = -e2 Jd4zd4z' S", (x-z) y So IJF 
0 

,(Z-Z’) Y,SF Z'-Y) DSA ‘(1 lJ" (z,z'),(3.29) 

and where D~~(z,z') is given by (3.12). 

Instead of proceeding directly, let us decompose Dgi(x,y) in terms of the 

Coulomb gauge propagator as follows: 

&x,Y) = D;"(x,y) + CDr(x.y) - Dy(x,y)] + [D$x,y) - Dj;"((x,y)] 

z OlfLyx,y) + *D*v(x,y) + .4?v (, 

&" is given by (3.10), and 3;" is given by 

X,Y) - (3.30) 

(3.4). Note that 

. . 

bDu"(x,y) = [6: 61 a: a; - 6: 6; a: a;1 JtXdt 1 
tY 

dt' D~"(x,y) 
T T 

(3.31) 

= [- a: a; + (6: a; a; + 6: a: ai)1 ,ixdt ,;dt' D;'(x,y) . 

-uv 
A quick glance back at (3.12) shows that AD can also b< ? written in terms of 

single and double gradients, and thus we have the generic form 

A*"(x,Y) 5 AD'"(X,y) t A?‘(X,y) = a,‘gT(X,y) 

+ ai 9; (x,y) + ai a”y h(x,y) , (3.32) 
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which is as it should be, since DE: is related to DF by a gauge transformation. 

how consider the amplitude that DSA couples to in (3.29): 

J&(x,y; z,z') = &x-z) Y' s; (z-z') y" s$za-y) . (3.33) 

This amplitude is not conserved in either z or I', for a simple application 

of the Ward-Takahashi identity, 

aU, [$(x-z) yu SF(z-y)] = i64(x-z) $(z-y) - is4(z-y) $(x-z) , 
(3.34) 

readily shows that a: J,,(x,y; z,z') f 0 and a",# J,,,(x,y; z,z') f 0. 

However, we may add contributions to J& due to fixed spurious currents 

that run along trajectories where we had required D& to vanish by our subsidiary 

gauge transformations and in so doing obtain a conserved amplitude. Without 

changing S(*)(x,y), we could then replace 

in (3.29) where 
J&(x,y,z,z') + JLltt(x,y,z,z') 

J;;t(x,y;z,z') = J'" dy,,(X,y;Z,Z') + JI1,; (X,y;Z,Z') . (3.35) 

Such a spurious amplitude is 

Jti(x,y;z,z') = + [S:(X-Z) yU SF(z-y)i Jsv(z') 

t SF(x-z') yv S$z'-y)i Jsu(z) 

0 
- +(x-y) Js"l(z) Js"(Z')l 

where J, is given by (3.17). One may readily verify that 

(3.36) 
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az,J&(x,y,z,z’) = aza,,J&(x,y;z,z’) = 0. (3.37) 

That is, Jtot is a conserved amplitude. Thus we rewrite (3.37) as 

iS(*)(x,y) = - e* fd4zd4z' Jct(x,y,z,z’) DSA,,v(z,z') 

(3.38) 

= - e* jd4zd4z' J’” tot(x,y,z,~‘) CDCuV(z,z’) + Ap,(z,z’)l 

Now using (3.331, integrating by parts, and using (3.37) we see that the 

remainder involving A,,\, gives no contribution so that 

i S(*)(x,y) = - e2 /d4zd4z0 J!& (X,Y ,z,z’ ) ucuv(z,z~ ) (3.39) 

An examination of the form of J& reveals that the first order super- 

axial gauge self energy (3.391, now expressed in the language of Coulomb gauge, 

has the following graphical interpretation. The contribution JGn comes from 

the first order Coulomb gauge self energy in Fig. 2(a). The first and second 

terms in JiG in (3.36) come from the interaction between the dynamical and 
!Jv 

spurious sources, shown as in Fig. 2(b), and the third term in Jsp comes from 

the self energy of the spurious source as in Fig. 2(C). 

The reader may verify that (3.38) is precisely the form one gets when 

isSA(X,Y) = <T(Jl(X) e 
i fd4z j,(z) J;(z) 

T(Y))> (3.40) 

is evaluated to order e* in perturbation theory; i.e. with J:(z) specified 

in eq. (3.17), then we have the gauge invariant expression 

iSsA(x,y) = <T(y(x)e 
ie.lRdz, Au(z) 

qay))> . (3.41) 

The line integral is evaluated along the trajectory R running from y to x 

described in Sec. 1. 
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IV. Concluding Remarks 

We have shown that in quantum electrodynamics propagators of charged 

operators in axial gauge contain hidden spurious sources that affect the 

propagation of the dynamical fields. If the operators are also local, then 

they contribute to the ultraviolet divergent self-energy of the fields. We 

have given an explicit demonstration of the appearance of spurious sources in 

classical electrodynamics and in the electron propagator in QED. Similar 

problems arise in non-Abelian gauge theories. There the spurious sources may 

combine with the dynamical fields to produce a confined gauge singlet state. 

The consequences for non-Abelian theories are discussed in the sequel in the 

language of the Polyakov-Wilson lattice gauge theory [6]. 
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Figure Captions 

1. Spurious current Js(x) induced by a non-conserved current J(x) in a super- 

temporal gauge. In this gauge A0 vanishes everywhere and A3 vanishes at 

x0 = t*. 

2. Coulomb gauge Feynman graphs for the O(e2) electron self energy showing 

the interaction with the spurious source x. 
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